Announcements

1) HW #U due Sunday

Integration Over More General Regions (Section 15.3) Assume a region R is bounded in IR (there is a number ro such that R is contained in a circle of radius r (cntered at the origin) The circle is contained in the square [-r, n] x [-r, r]

The Definition

Let R be a bounded region in IR' and let Z = f(x,y)be continuous on R. R is contained in the square [-r,r] × [-r,r] for some r>0. Define $g(x,y) = \sum f(x,y), (x,y) in R$ O, (x,y) not in R

We define

 $f(x,y)dA = \int g(x,y)dA$ $\left[-\Gamma,\Gamma\right] \times \left[-\Gamma,\Gamma\right]$

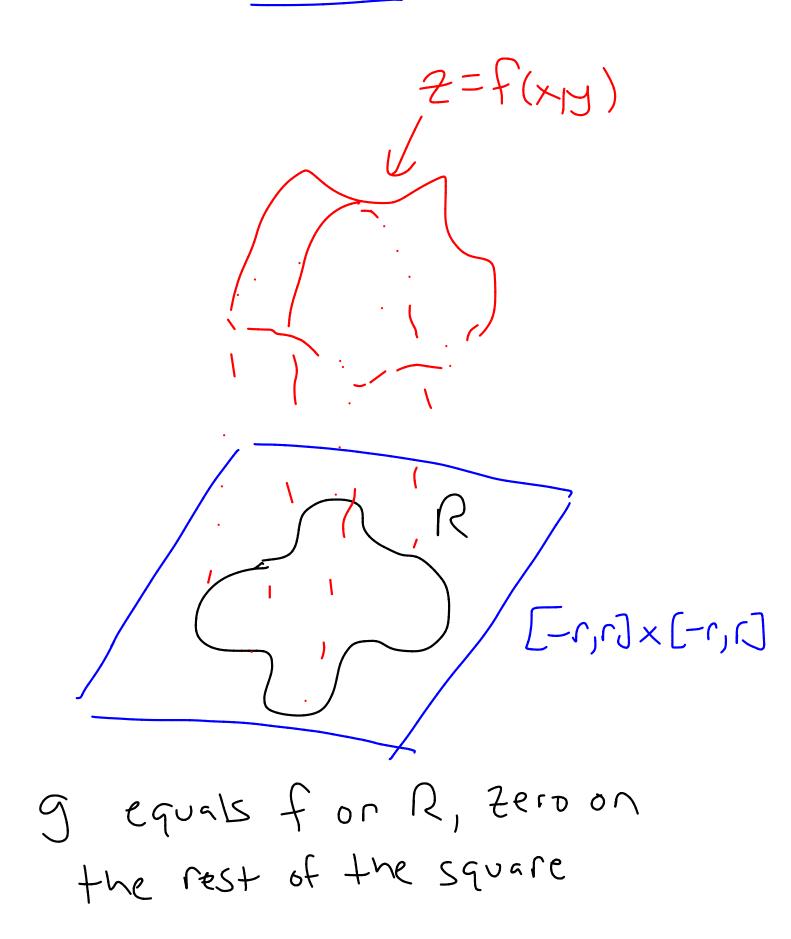
provided the integral of g exists.

Note: 9 is probably discontinuous,

but its discontinuities are usually

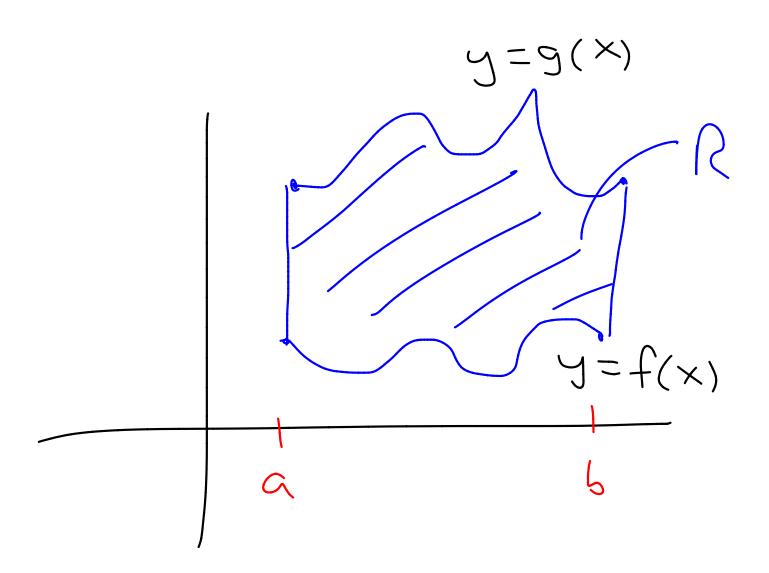
Over a one- or Zero-dimensional

region, so the integral will be zero there.



Type I Regions A bounded region R in IRd is called Type I if there are numbers a and b and functions f and 9 of one variable such that (X) is in R if $| a \leq x \leq b, f(x) \leq y \leq g(x)|$

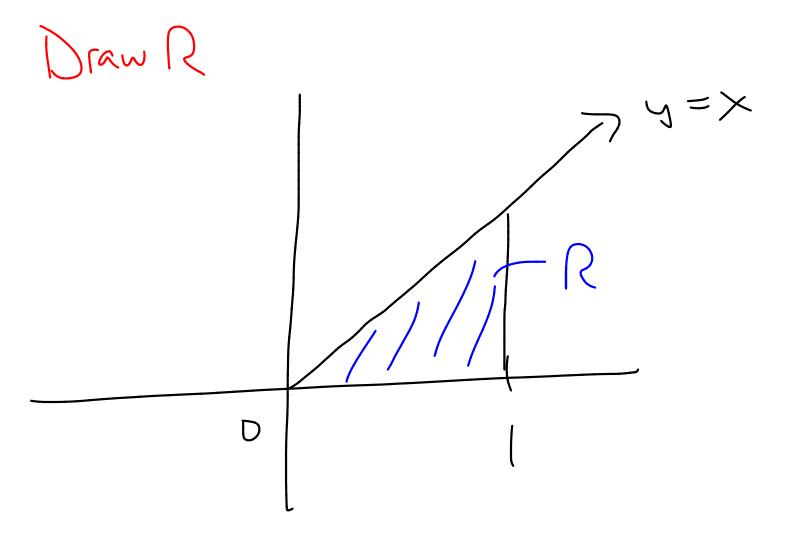
Picture

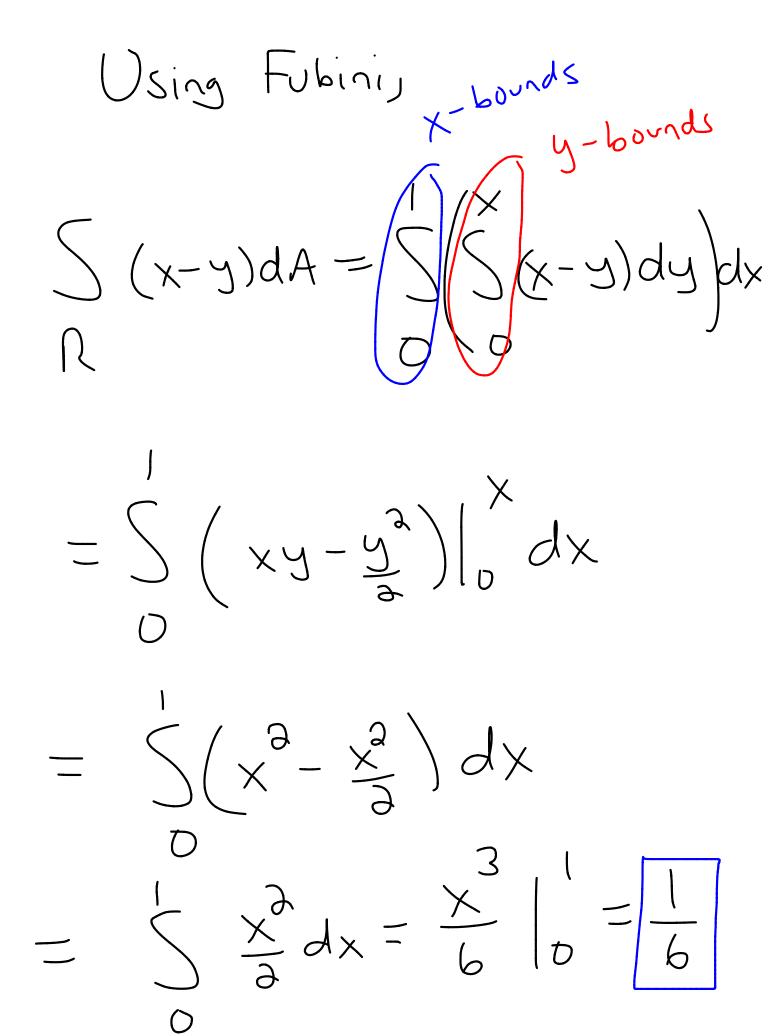


Notation: When we write

ZA B, it means "the set of all A such that B "

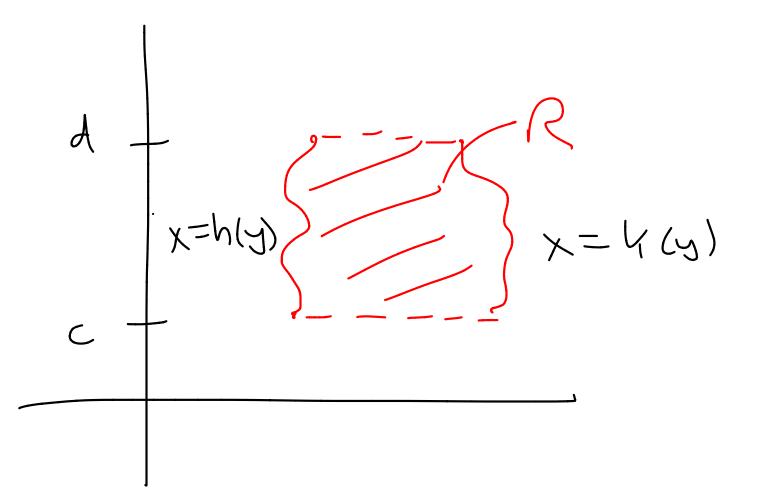
Example 1: S(X-y)dA R f(x) g(x)where $R = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\}$





Type I Regions A bounded region R in IR is said to be of Type II if there are numbers c and d and functions hand k with $R = \sum (x,y) \left| c \leq y \leq d, h(y) \leq x \leq k(y) \right]$

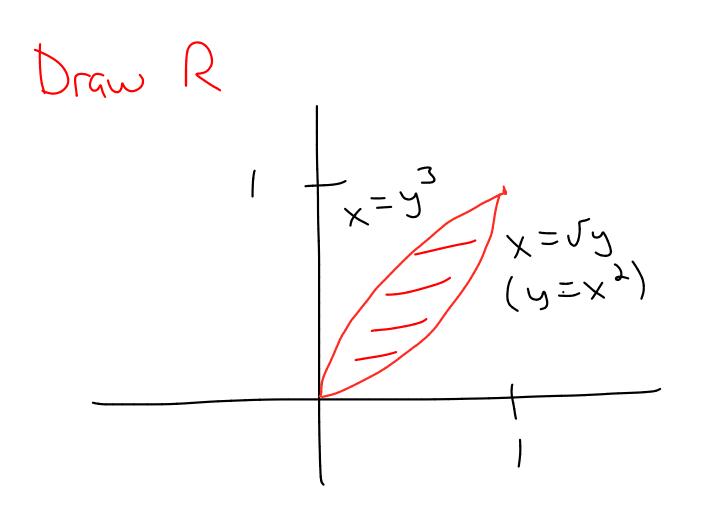
Picture



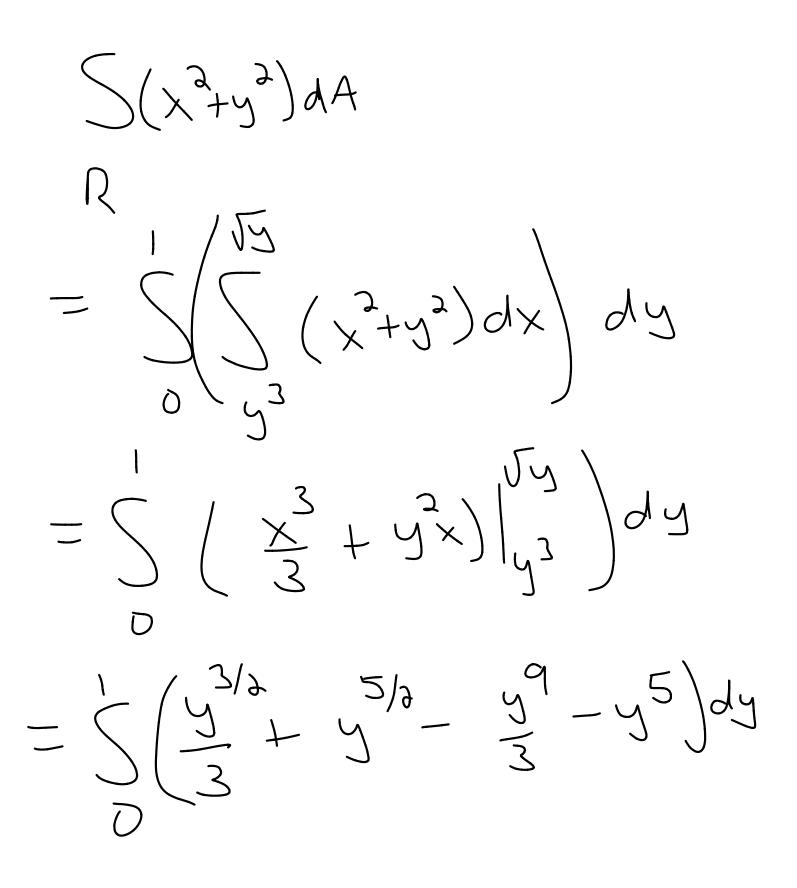
Example 2: $S(x^2+y^2)dA$

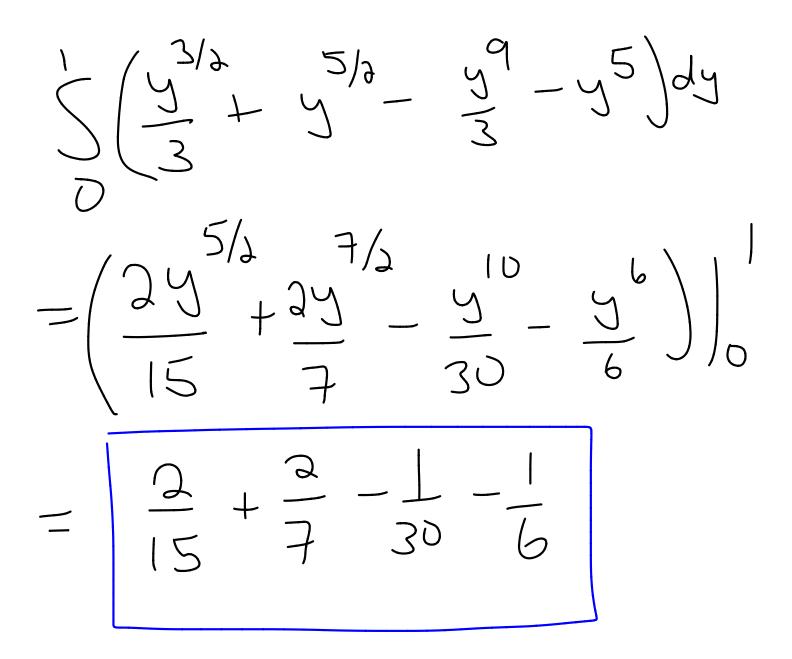
where

 $R = \{(x,y) | v \in y \in I, y^3 \leq x \leq Fy\}$



By Fubini,





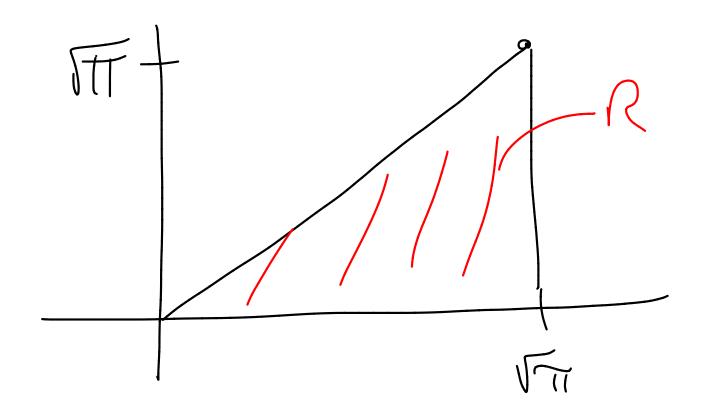
The most frustrating regions are both type I and type II - you need to Choose an order, and sometimes, the order matters !

- Xample 3: 5 (US(x2)dA R

where

 $R = \{(x,y) \mid 0 \leq y \leq x, 0 \leq x \leq fif \}$

Draw R



R - { (x1y) | 0 ≤ y ≤ x, 0 ≤ x ≤ ITT }

= { (x, y) 0 ≤ y ≤ √TT, y ≤ x ≤ √TT

Can choose which direction to integrate in 1 I don't know Scos(x2)dx, try y first.

 $S cos(x^2) dx$ $P = \int_{X} \int_{X} \cos(x^2) dy dx$

 $\int (\int \cos(x^2) dy) dx$ 0 $\sqrt{\pi}$ $\int_{0}^{0} x \cos(x^{2}) dx$ $\int_{0}^{0} = x^{2}, \quad du = \partial x dx,$ So the integral becomes \bigcap $= \frac{1}{2} \int (\cos(\upsilon) d\upsilon = \frac{\sin(\upsilon)}{2} \int_{0}^{0}$