Announcements

1) HW \#4 due Sunday
2) Quiz on Tuesday

Covering sections 15.3 and 15.4, practice problems on (anvas

Integration Over More General Regions

$$
(\text { Section } 15.3)
$$

Assume a region R is bounded in \mathbb{R}^{2} (there is a number $r>0$ such that R is contained in a circle of radius r (centered at the origin)

The circle is contained in the square $[-r, r] \times[-r, r]$

The Definition
Let R be a bounded region in \mathbb{R}^{2} and let $z=f(x, y)$ be continuous on $R . R$ is contained in the square $[-r, r] \times[-r, r]$ for some $r>0$.

$$
\text { Define } g(x, y)=\left\{\begin{array}{l}
f(x, y),(x, y) \text { in } R \\
0,(x, y) \text { not in } R
\end{array}\right.
$$

We define

$$
\begin{aligned}
& \int_{R} f(x, y) d A=\int g(x, y) d A \\
& {[-r, r] x[-r, r]}
\end{aligned}
$$

provided the integral of g exists.

Note: 9 is probably discontinuous, but its discontinuities are usually over a one- or zero -dimensional region, so the integral will be zero there.

Picture

g equals for R, zero on the rest of the square

Type I Regions
A bounded region R in \mathbb{R}^{2} is called Type I if there are numbers a and b and functions f and g of one variable such that (x, y) is in R if

$$
a \leq x \leq b, f(x) \leq y \leq g(x)
$$

Picture

Notation: When we write $\{A \mid B\}$, it means
"the set of all A such that $\beta^{\prime \prime}$

Example 1: $\int_{R}(x-y) d A$

$$
f(x) \quad g(x)
$$

where $R=\{(x, y) \backslash 0 \leq x \leq 1, \underset{0 \leq y \leq x}{\downarrow}\}$

Draw R

Using Fubinis

$$
\begin{aligned}
& \left.\int_{R}(x-y) d A=\int_{0}^{1}(x-y) d y\right) d x \\
& =\left.\int_{0}^{1}\left(x y-\frac{y^{2}}{2}\right)\right|_{0} ^{x} d x \\
& =\int_{0}^{1}\left(x^{2}-\frac{x^{2}}{2}\right) d x \\
& =\int_{0}^{1} \frac{x^{2}}{2} d x=\left.\frac{x^{3}}{6}\right|_{0} ^{1}=\frac{1}{6}
\end{aligned}
$$

Type II Regions
A bounded region R in \mathbb{R}^{2} is said to be of Type II if there are numbers c and d and functions h and K with

$$
R=\{(x, y) \mid c \leq y \leq d, h(y) \leq x \leq k(y)\}
$$

Picture

Example 2: $\int_{R}\left(x^{2}+y^{2}\right) d A$
where

$$
R=\left\{(x, y) \mid 0 \leq y \leq 1, y^{3} \leq x \leq \sqrt{y}\right\}
$$

Draw R

By Fubinis

$$
\begin{aligned}
& \int_{R}\left(x^{2}+y^{2}\right) d A \\
= & \int_{0}^{1}\left(\int_{y^{3}}^{\sqrt{y}}\left(x^{2}+y^{2}\right) d x\right) d y \\
= & \left.\left.\int_{0}^{1}\left(\frac{x^{3}}{3}+y^{2} x\right)\right|_{y^{3}} ^{\sqrt{y}}\right) d y \\
= & \int_{0}^{1}\left(\frac{y^{3 / 2}}{3}+y^{5 / 2}-\frac{y^{9}}{3}-y^{5}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{y^{3 / 2}}{3}+y^{5 / 2}-\frac{y^{9}}{3}-y^{5}\right) d y \\
= & \left.\left(\frac{2 y^{5 / 2}}{15}+\frac{2 y^{7 / 2}}{7}-\frac{y^{10}}{30}-\frac{y^{6}}{6}\right)\right|_{0} ^{1} \\
= & \frac{2}{15}+\frac{2}{7}-\frac{1}{30}-\frac{1}{6}
\end{aligned}
$$

The most frustrating regions are both type I and type II - you need to (choose an order, and sometimes, the order matters!

Example 3: $\int_{R} \cos \left(x^{2}\right) d A$ where

$$
R=\{(x, y) \mid 0 \leq y \leq x, 0 \leq x \leq \sqrt{\pi}\}
$$

Draw R

$$
\begin{aligned}
R & =\{(x, y) \mid 0 \leq y \leq x, 0 \leq x \leq \sqrt{\pi}\} \\
& =\{(x, y) \mid 0 \leq y \leq \sqrt{\pi}, y \leq x \leq \sqrt{\pi}\}
\end{aligned}
$$

Can choose which direction to integrate in! I don't know $\int \cos \left(x^{2}\right) d x$, try y first:

$$
\begin{aligned}
& S_{R} \cos \left(x^{2}\right) d x \\
& =\int_{0}^{\sqrt{\pi}}\left(\int_{0}^{x} \cos \left(x^{2}\right) d y\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\sqrt{\pi}}\left(\int_{0}^{x} \cos \left(x^{2}\right) d y\right) d x \\
= & \left.\int_{0}^{\sqrt{\pi}}\left(y \cos \left(x^{2}\right)\right)\right|_{0} ^{x} d x \\
= & \int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x \\
& v=x^{2}, d u=2 x d x,
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
=\frac{1}{2} \int_{0}^{\pi} \cos (v) d v & =\left.\frac{\sin (v)}{2}\right|_{0} ^{\pi} \\
& =0
\end{aligned}
$$

